

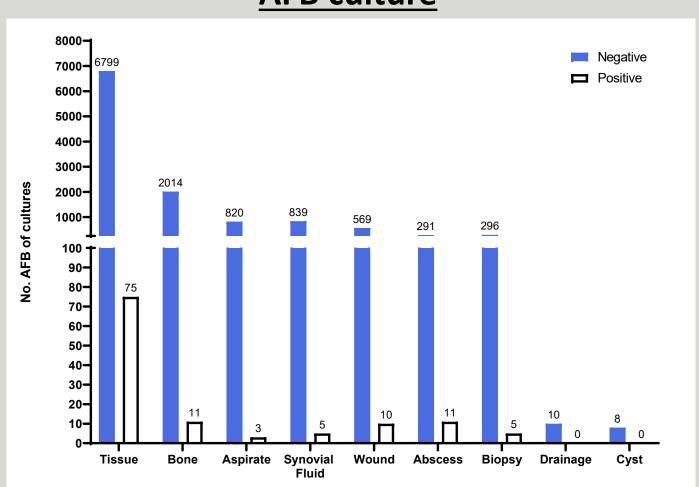
Allison R. Eberly¹, Christopher G. Snyder¹, Maggie Keeven², Dorothy Sinclair³, Jonas Marschall³, & Carlos Mejia-Chew³

¹Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110. ²Barnes Jewish Hospital, St. Louis, MO, 63110. ³Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110.

INTRODUCTION

- Diagnosis of bone and joint infections often requires collection of multiple surgically collected specimens for laboratory testing to identify a microbiologic etiology
- Bone and joint infections caused by mycobacteria are rare (0.5% – 2%), but most data is derived from singlecenter studies and/or case studies focused on prosthetic joint infections
- Mycobacterial (AFB) culture is more sensitive than direct specimen fluorescent stain
- For example, the microbial burden required to detect an organism using each modality:
 - Culture: 10-100 CFU/ml
 - Direct specimen stain: 1,000-10,000 CFU/mL

Study Goals


- Describe utilization and yield of mycobacterial direct specimen stains and cultures for all osteoarticular specimens
- Assess impact of negative cultures on lab full-time workflow and full-time equivalent (FTE)

METHODS

- Retrospective, single center study using the laboratory information system data collection
- All mycobacterial cultures ordered on osteoarticular specimens from Jan 1, 2017 to Dec 31, 2021:
- Sources include bone, synovial fluid, tissue, abscess, wound, aspirate, biopsy, drainage
- The specimen type and source were reviewed by an ID physician for inclusion
- Laboratory workflow and FTE analysis

Washington University in St. Louis

SCHOOL OF MEDICINE

- culture

Sample arrives in Laboratory

Microbiologic Yield and Cost of Mycobacterial Cultures from Osteoarticular Specimens

RESULTS

Osteoarticular specimen types submitted for **AFB culture**

11,783 osteoarticular specimens were sent for AFB

66.1% (7,789/11,783) ordered as AFB culture only 33.9% (3,394/11,783) ordered AFB cultures + stain

0.026% (2 of 3,394) stains were positive

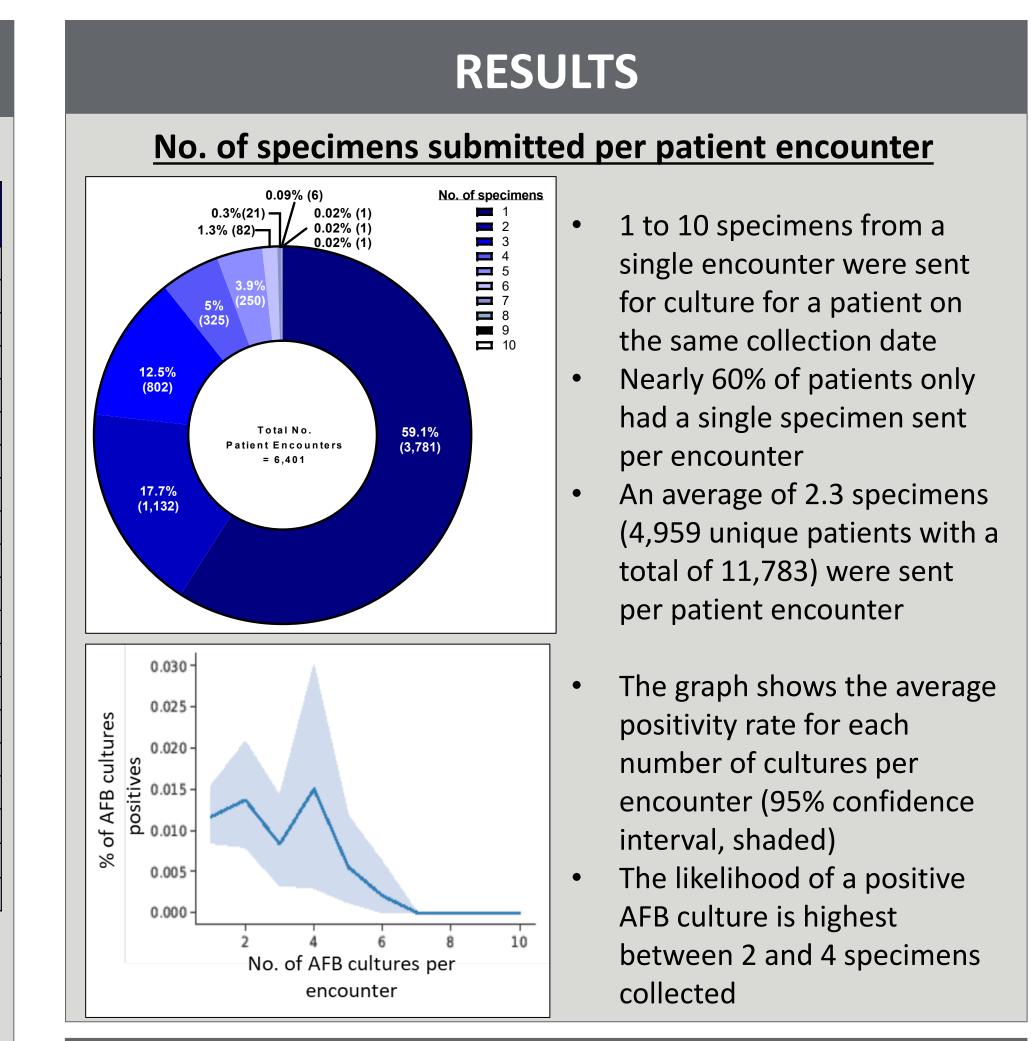
|--|

	# culture	# of
Organism	positives	patients
Rapidly-growing mycobacteria (RGM)	51	32
<i>M. fortuitum</i> complex	29	16
M. chelonae	16	10
<i>M. abscessus</i> complex	4	4
<i>M. mucogenicum/phocaicum</i> group	2	2
Slowly-growing mycobacteria (SGM)	69	44
<i>M. avium</i> complex (MAC)	37	23
<i>M. terrae</i> complex	5	2
M. gordonae	4	4
<i>M. simiae</i> complex	4	2
<i>M. smegmatis</i> complex	4	2
<i>M. tuberculosis</i> complex (MTB)	3	1
M. mageritense	2	1
M. szulgai	2	1
M. malmoense	1	1
M. cosmeticum	1	1
M. marnium	1	1
M. paraffinicum	1	1
<i>Mycobacterium</i> species, not MTB	4	4
Total	120	76

• 1.01% (120/11,783) of cultures were positive for mycobacteria, corresponding to 72 unique patients • 4 patients had co-infections with two different mycobacterial species

Laboratory Impact: AFB Culture Laboratory Workflow

2	5	10	2	8	2
mins	mins	mins	mins	mins	mins
 Accessioning	 Processing*	Direct Specimen Smear Staining & Reading	 Preliminary Reporting	Weekly Culture Reading (1 min/week for 8 weeks)	Final Reporting


*Includes hands-on time only for sorting specimens, labeling media, if needed due to specimen type, decontamination steps (decontamination, neutralize, centrifuge, reconstitution), inoculating media, and slide

• AFB culture workup is hands-on and is currently not automated for reading solid agar • Estimated hands-on time for a single negative culture is 15-30 minutes (range incorporated to include direct specimen stain) per our laboratory processes

• Overall, this equates to an estimated 2,000 hours and 97 FTE over the 5-year study period

Washington University School of Medicine (314)273-4885 a.eberly@wustl.edu

CONCLUSIONS & FUTURE DIRECTIONS

- Direct stains on osteoarticular specimens have low yield
- Only 1% of osteoarticular mycobacterial cultures are positive, but multiple cultures from the same patient encounter increased recovery of mycobacteria

Future Directions

- Implement the removal of direct specimen AFB stain from the order set on osteoarticular specimens
- Identify clinical predictors to help guide targeted ordering of mycobacterial cultures in osteoarticular infections

REFERENCES

- Tai DBG, et al. Fungal and mycobacterial cultures should not be routinely obtained for diagnostic work-up of patients with suspected periprosthetic joint infections. Bone Joint J. 2022 Jan;104-B(1):53-58. (PMID: 34969277)
- Wadey VM, Huddleston JI, Goodman SB, Schurman DJ, Maloney WJ, Baron EJ. Use and cost-effectiveness of intraoperative acid-fast bacilli and fungal cultures in assessing infection of joint arthroplasties. J Arthroplasty. 2010 Dec; 25(8):1231-4. (PMID: 19879728)
- 3. Maimaiti Z, Li Z, Xu C, Fu J, Hao L, Chen J, Li X, Chai W. Non-Tuberculosis Mycobacterium Periprosthetic Joint Infections Following Total Hip and Knee Arthroplasty: Case Series and Review of the Literature. Orthop Surg. 2023 Jun;15(6):1488-1497. (PMID: 37154097)
- Biorender

Department of Pathology & Immunology Division of Laboratory and Genomic Medicine